与传统基因组学相比,宏基因组学最强大的潜力之一是能够发现微生物世界和环境之间相互作用的趋势和相关性。在今天,元基因组分析是负担得起的,并可用于一般的微生物学项目,允许产生大量的序列输出。获取样本后进行宏基因组分析的第一步是DNA测序。目前,批量宏基因组数据的生成主要有两种方法: Shotgun宏基因组学和高通量测序。猎枪宏基因组学包括提取后DNA的随机剪切,导致许多短序列的形成,然后重建成一个一致序列。猎枪宏基因组学提供了关于哪些生物体存在以及群落中可能存在哪些代谢过程的信息。[6]高通量测序允许多个DNA分子并行测序,使数亿个DNA分子可以同时测序。这一优势使得高温超导技术可以用于创建大型数据集,从而对各种疾病和发育阶段的细胞基因组和转录组特征产生更全面的了解。这些用于宏基因组学的测序技术在测序之前绕过了传统基因组研究的克隆和培养要求,消除了微生物环境采样的一个主要偏见和瓶颈。

英国科学essay代写 宏基因组学

One of the strongest potentials of metagenomics, when compared to conventional genomics lies, is the ability to detect trends and correlations indicative of interactions between the microbial world and the environment. In present day, metagenomic analyses are affordable and accessible to the average microbiology project, allowing for the generation of massive sequence outputs.[5] The first step a metagenomic analysis after acquiring of a sample involves the sequencing of DNA. Currently, two main approaches are utilized to generate the bulk metagenomic data: Shotgun metagenomics and High-throughput sequencing. Shotgun metagenomics involves the random sheering of DNA following its extraction, resulting in the formation of many short sequences which are then reconstructed into a consensus sequence. Shotgun metagenomics provides information about which organisms are present and what metabolic processes are possible in the community.[6] High-throughput sequencing allows for the sequencing of multiple DNA molecules in parallel, enabling hundreds of millions of DNA molecules to be sequenced at a time. This advantage allows HTS to be used to create large data sets, generating more comprehensive insights into the cellular genomic and transcriptomic signatures of various diseases and developmental stages.[7] These sequencing techniques used in metagenomics bypasses the cloning and culturing requirements of traditional genomic studies before sequencing can be conducted, removing one of the main biases and bottlenecks in microbial environmental sampling.

本段内容来自网络 并不是我们的写手作品 请勿直接剽窃,查重100%,造成后果与本站无关。如需定制论文请记得联系我们。